Advertisements
Advertisements
प्रश्न
Prove the following identity :
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq
उत्तर
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))`
= `sqrt((secq - 1)/(secq + 1) . (secq - 1)/(secq - 1)) + sqrt((secq + 1)/(secq - 1) . (secq + 1)/(secq + 1))`
= `sqrt((secq - 1)^2/(sec^2q - 1)) + sqrt((secq + 1)^2/(secq^2 - 1)`
= `sqrt((secq - 1)^2/tan^2q) + sqrt((secq + 1)^2/(tan^2q)` (`Q sec^2q - 1 = tan^2q`)
= `(secq - 1)/tanq + (secq + 1)/tanq = (secq - 1 + secq + 1)/tanq`
= `(2secq)/tanq = (2/cosq)/(sinq/cosq) = 2/sinq = 2cosecq`
APPEARS IN
संबंधित प्रश्न
`((sin A- sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0`
If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.
What is the value of (1 + cot2 θ) sin2 θ?
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
Choose the correct alternative:
1 + tan2 θ = ?
If sin θ = `1/2`, then find the value of θ.
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
Factorize: sin3θ + cos3θ
Hence, prove the following identity:
`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`