Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`
उत्तर
`(secθ - tanθ)^2`
= `(1/cosθ - sinθ/cosθ)^2`
= `((1 - sinθ)/cosθ)^2 = (1 - sinθ)^2/cos^2θ`
= `(1 - sinθ)^2/(1 - sin^2θ) = (1 - sinθ)^2/((1 -sinθ)(1 + sinθ))` (∵ `1 - sin^2θ = cos^2θ`
= `(1 - sinθ)/(1 + sinθ)`
APPEARS IN
संबंधित प्रश्न
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
cosec4θ − cosec2θ = cot4θ + cot2θ
If m = ` ( cos theta - sin theta ) and n = ( cos theta + sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.
If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
If cos A + cos2 A = 1, then sin2 A + sin4 A =
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ