Advertisements
Advertisements
प्रश्न
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
उत्तर
Let `x/(acosθ) = y/(bsinθ)` ..............(1)
and `(ax)/(cosθ) - (by)/(sinθ) = a^2 - b^2` ...........(2)
From (1), `y/sinθ = (xb)/(a cosθ)`
Putting (2) , we get `(ax)/cosθ - b (xb)/(acosθ) = a^2 - b^2`
⇒ `(ax)/cosθ - (xb^2)/(a cosθ) = a^2 - b^2`
⇒ `(x(a^2 - b^2))/(acosθ) = a^2 - b^2`
⇒ x = a cosθ
By(1), `y = (xb sinθ)/(a cosθ) = (a cosθ bsinθ)/(a cosθ) = b sinθ`
Thus , `x^2/a^2 + y^2/b^2 = (a^2 cos^2θ)/a^2 + (b^2 sin^2θ)/b^2 = sin^2θ + cos^2θ = 1`
APPEARS IN
संबंधित प्रश्न
Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`
Prove that:
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
`sec theta (1- sin theta )( sec theta + tan theta )=1`
`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `
Write the value of cosec2 (90° − θ) − tan2 θ.
Prove the following identity :
`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
If tan θ = `7/24`, then to find value of cos θ complete the activity given below.
Activity:
sec2θ = 1 + `square` ......[Fundamental tri. identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.