Advertisements
Advertisements
प्रश्न
Write the value of cosec2 (90° − θ) − tan2 θ.
उत्तर
We have,
`cosec^2 (90°-θ)- tan ^2θ= {cosec(90°-θ)}^2-tan ^2θ`
= `(secθ )^2-tan^2 θ`
= `sec^2 θ-tan ^2 θ`
We know that, ` sec^2 θ-tan ^2θ=1`
Therefore, \[{cosec}^2 \left( 90° - \theta \right) - \tan^2 \theta = 1\]
APPEARS IN
संबंधित प्रश्न
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
Prove the following trigonometric identities.
`cosec theta sqrt(1 - cos^2 theta) = 1`
Prove the following trigonometric identities
`(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
`(sec^2 theta-1) cot ^2 theta=1`
`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`
Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
What is the value of (1 + cot2 θ) sin2 θ?
Write the value of sin A cos (90° − A) + cos A sin (90° − A).
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1
If tan θ = `13/12`, then cot θ = ?
If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.
Prove the following identity:
(sin2θ – 1)(tan2θ + 1) + 1 = 0