Advertisements
Advertisements
प्रश्न
Write the value of cosec2 (90° − θ) − tan2 θ.
उत्तर
We have,
`cosec^2 (90°-θ)- tan ^2θ= {cosec(90°-θ)}^2-tan ^2θ`
= `(secθ )^2-tan^2 θ`
= `sec^2 θ-tan ^2 θ`
We know that, ` sec^2 θ-tan ^2θ=1`
Therefore, \[{cosec}^2 \left( 90° - \theta \right) - \tan^2 \theta = 1\]
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following trigonometric identities.
`(1 + cos A)/sin^2 A = 1/(1 - cos A)`
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.
Prove that:
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.
Prove that:
cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A
`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`
Show that none of the following is an identity:
`tan^2 theta + sin theta = cos^2 theta`
Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`
What is the value of (1 − cos2 θ) cosec2 θ?
Prove the following identity :
`cosec^4A - cosec^2A = cot^4A + cot^2A`
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.
Prove the following identities.
cot θ + tan θ = sec θ cosec θ
If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to
sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= R.H.S
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ
Prove the following:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α