Advertisements
Advertisements
प्रश्न
If cosec θ − cot θ = α, write the value of cosec θ + cot α.
उत्तर
Given: `cosec θ-cot θ=α`
We know that, `cosec^2θ-cot^2θ=1`
Therefore,
`cosec^2 θ-cot^2θ=1`
⇒ `(cosec θ+cot θ) (cosec θ-cot θ)=1`
⇒ `(cosecθ+cot θ )α=1`
⇒ `(cosec θ+cot θ)=1/α`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
(i) (1 – sin2θ) sec2θ = 1
(ii) cos2θ (1 + tan2θ) = 1
Prove the following trigonometric identities.
`sin theta/(1 - cos theta) = cosec theta + cot theta`
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
Prove that:
cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`
If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
The value of sin2 29° + sin2 61° is
Prove the following identity :
`cos^4A - sin^4A = 2cos^2A - 1`
Prove the following identity :
`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0
(sec θ + tan θ) . (sec θ – tan θ) = ?
Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ
Prove that sin4A – cos4A = 1 – 2cos2A
Prove that
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"`
If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.