Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`sin theta/(1 - cos theta) = cosec theta + cot theta`
उत्तर
We have to prove `sin theta/(1 - cos theta) = cosec theta + cot theta`
We know that `sin^2 theta = cos^2 theta = 1`
`sin theta/(1 - cos theta) = (sin theta (1 + cos theta))/(1 - cos^2 theta)`
`= (sin theta (1 + cos theta))/(1 - cos^2 theta)``
`= (sin theta (1 + cos theta))/(sin^2 theta)`
`= (1 + cos theta)/sin theta`
`= 1/sin theta + cos theta/sin theta`
`= cosec theta + cot theta`
APPEARS IN
संबंधित प्रश्न
Prove that:
sec2θ + cosec2θ = sec2θ x cosec2θ
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Prove the following trigonometric identities.
`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`
Prove the following trigonometric identities.
if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
Prove the following identities:
`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`
Write the value of `(1 + cot^2 theta ) sin^2 theta`.
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
What is the value of (1 − cos2 θ) cosec2 θ?
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
cos4 A − sin4 A is equal to ______.
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Without using trigonometric identity , show that :
`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`
Prove the following identities.
`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2
Prove the following:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α
If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.
sec θ when expressed in term of cot θ, is equal to ______.