Advertisements
Advertisements
प्रश्न
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
उत्तर
L.H.S. = cosec A(1 + cos A) (cosecA – cot A)
= `1/(sin A)(1 + cos A)(1/(sin A) - (cos A)/(sin A))`
`((1-cos A)/sin A)`
`1/sin A(1+cos A)((1-cos A)/sin A)`
`= ((1+ cos A)(1-cos A))/sin^2 A`
Apply the identity (1 + cosA) (1 − cosA) = 1 − cos2A
`= (1-cos^2A)/sin^2A`
`= sin^2A/sin^2A = 1`
cscA(1 + cosA) (cscA − cotA) = 1 proved
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`
Show that none of the following is an identity:
`sin^2 theta + sin theta =2`
If m = ` ( cos theta - sin theta ) and n = ( cos theta + sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
Prove the following identity :
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`
prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
(sec θ + tan θ) . (sec θ – tan θ) = ?
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.