Advertisements
Advertisements
प्रश्न
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
उत्तर
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
Consider `tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ`
⇒ `tan(90^circ - 80^circ) - tan(90^circ - 70^circ) tan30^circ tan70^circ tan80^circ`
⇒ `cot80^circ . cot70^circ .tan30^circ tan70^circ tan80^circ`
⇒ `tan30^circ = 1/sqrt(3)` [As tanθ cotθ = 1]
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
(i) (1 – sin2θ) sec2θ = 1
(ii) cos2θ (1 + tan2θ) = 1
Prove the following identities:
sec2 A + cosec2 A = sec2 A . cosec2 A
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
Prove the following identity :
`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`
Prove the following identity :
`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`
Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.
Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)
tan θ × `sqrt(1 - sin^2 θ)` is equal to: