Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`
उत्तर
LHS = `(tanθ + sinθ)/(tanθ - sinθ)`
= `(sinθ/cosθ + sinθ)/(sinθ/cosθ - sinθ) = (sinθ + sinθcosθ)/(sinθ + sinθcosθ)`
= `(sinθ(1 + cosθ))/sin(1 + cosθ) = (1 + cosθ)/(1 - cosθ)`
= `(1 + 1/secθ)/(1 - 1/secθ) = ((secθ + 1)/secθ)/((secθ - 1)/secθ)`
= `(secθ + 1)/(secθ - 1)`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
Prove the following trigonometric identities.
`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
Prove the following identities:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
Prove that `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A - 1) = 1`.
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.