Advertisements
Advertisements
प्रश्न
Prove the following identities:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
उत्तर
L.H.S. = (sin A + cosec A)2 + (cos A + sec A)2
= sin2 A + cosec2 A + 2 sin A cosec A + cos2 A + sec2 A + 2 cos A sec A
= `sin^2A + cosec^2A + 2sinA xx 1/sinA + cos^2A + sec^2A + 2cosA xx 1/cosA`
= sin2 A + cos2 A + cosec2 A + sec2 A + 2 + 2 ...(∵ sin2 A + cos2 A = 1)
= 1 + cosec2 A + sec2 A + 4
= (1 + cot2 A) + (1 + tan2 A) + 5 ...[∵ cosec2 A = 1 + cot2 A and sec2 A = 1 + tan2 A]
= 1 + cot2 A + 1 + tan2 A + 5
= 7 + tan2 A + cot2 A = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 + cos A)/sin A = sin A/(1 - cos A)`
Prove the following trigonometric identities
tan2 A + cot2 A = sec2 A cosec2 A − 2
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`
` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`
Write the value of `(cot^2 theta - 1/(sin^2 theta))`.
If cosec θ − cot θ = α, write the value of cosec θ + cot α.
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to
a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to