Advertisements
Advertisements
प्रश्न
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to
पर्याय
0
1
−1
None of these
उत्तर
None of these
`(cosec ecθ-sinθ)(secθ-cos θ)(tan θ+cot θ)` Simplifying the given expression, we have
`(cosec θ-sinθ)(secθ-cosθ)(tanθ+cot θ)`
`=(1/sinθ-sinθ)(1/cos^2 θ-cosθ)(sin θ/cos θ+cos θ/sinθ)`
`=1-sin^2θ/sinθ xx(1-cos^2θ)/cos θ xx (sin^2θ+cos^2θ)/(sin θ cos θ)`
=` cos^2θ/sin θ xx sin^2θ/cosθxx1/(sinθ cosθ)`
=`(cos^2θ sin^2θ)/(sin^2θ cos^2θ)`
= `1`
APPEARS IN
संबंधित प्रश्न
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
(secA + tanA) (1 − sinA) = ______.
Without using trigonometric tables evaluate
`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`
If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`
If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`
If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`
If `sqrt(3) sin theta = cos theta and theta ` is an acute angle, find the value of θ .
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
If tanθ `= 3/4` then find the value of secθ.
Prove that:
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1
Prove the following identity :
`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
Prove that:
`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)`
If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to
`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?
If 1 – cos2θ = `1/4`, then θ = ?
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`