Advertisements
Advertisements
प्रश्न
`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?
उत्तर
`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = `(1 - (1)^2)/(1 + (1)^2)` ......[∵ tan 45° = 1]
= `(1 - 1)/(1 + 1)`
= `0/2`
= 0
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
Prove the following trigonometric identities.
`(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
Prove the following trigonometric identities.
`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`
Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove the following identities:
(1 + tan A + sec A) (1 + cot A – cosec A) = 2
`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
If x = a sin θ and y = bcos θ , write the value of`(b^2 x^2 + a^2 y^2)`
Prove that:
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`
If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2.
If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ