Advertisements
Advertisements
प्रश्न
If x = a sin θ and y = bcos θ , write the value of`(b^2 x^2 + a^2 y^2)`
उत्तर
`(b^2 x^2 + a^2 y^2)`
=`b^2 (a sin theta )^2 + a^2 ( bcos theta)^2`
=`b^2 a^2 sin^2 theta + a^2 b^2 cos^2 theta`
=`a^2 b^2 ( sin^2 theta + cos ^2 theta)`
=`a^2 b^2 (1)`
=`a^2 b^2`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`sin^2 A + 1/(1 + tan^2 A) = 1`
Prove the following trigonometric identities.
`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
Prove the following identities:
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove that:
(sec A − tan A)2 (1 + sin A) = (1 − sin A)
If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2.
If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\]
Prove the following identity :
`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`
Prove the following identity :
`(cotA + tanB)/(cotB + tanA) = cotAtanB`
Prove the following identity :
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`
If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to
If cos θ = `24/25`, then sin θ = ?
Prove that sec2θ − cos2θ = tan2θ + sin2θ
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.