मराठी

If Cosec θ = 2x and 5 ( X 2 − 1 X 2 ) 2 ( X 2 − 1 X 2 ) - Mathematics

Advertisements
Advertisements

प्रश्न

If cosec θ = 2x and 5(x21x2) 2(x21x2) 

बेरीज

उत्तर

Given: 

cosecθ=2x,cotθ2x 

We know that, 

cosec2θ-cot2θ=1

(2x)2-(2x)2=1 

4x2-4x2=1 

4(x2-1x2)=1 

2×2×(x2-1x2)=1 

2(x2-1x2)=12

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.3 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.3 | Q 23 | पृष्ठ ५५

संबंधित प्रश्‍न

Prove the following identities:

(i)(sinθ+cosecθ)2+(cosθ+secθ)2=7+tan2θ+cot2θ

(ii)(sinθ+secθ)2+(cosθ+cosecθ)2=(1+secθcosecθ)2

(iii)sec4θsec2θ=tan4θ+tan2θ


If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1


Prove the following trigonometric identities.

(1+sinθ-cosθ1+sinθ+cosθ)2=1-cosθ1+cosθ


Prove the following trigonometric identities.

sinAsecA+tanA-1+cosAcosecA+cotA+1=1


1-cosθ1+cosθ=(cosec θ-cot θ)


Write the value of cosec2θ(1+cosθ)(1-cosθ).


If cosB=35and(A+B)=-90°,find the value of sin A.


Prove that:

tan A(1+tan2A)2+Cot A(1+Cot2A)2=sin A cos A.


Prove that sinθ-cosθ+1sinθ+cosθ-1=1secθ-tanθ


Prove that secθ + tanθ =cosθ1-sinθ.


Write the value of cosec2 (90° − θ) − tan2 θ. 


If cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2 


If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, thenx2a2+y2b2


Prove the following identity : 

cosecAcosecA-1+cosecAcosecA+1=2sec2A


A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.


Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.


Prove that cosθ1+sinθ=1-sinθcosθ


If sec θ = 4140, then find values of sin θ, cot θ, cosec θ


Prove that cot A1-cotA+tan A1-tanA = – 1


Factorize: sin3θ + cos3θ

Hence, prove the following identity:

sin3θ+cos3θsinθ+cosθ+sinθcosθ=1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.