Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`
उत्तर
We have to prove `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`
We know that, `sin^2 A + cos^2 A = 1`
So,
`sin A/(sec A + tab A - 1) + cos A/(cosec A + cot A -1)`
`= sin A/(1/cos A + sin A/cos A - 1) + cos A/(1/sin A + cos A/sin A - 1)`
`= sin A/((1 + sin A - cos A)/cos A) + cos A/((1 + cos A - sin A)/sin A)`
`= (sin A cos A)/(1 + sin A - cos A) + (sin A cos A)/(1 + cos A - sin A)`
`= (sin A cos A(1 + cos A - sin A) + sin A cos A((1 + sin A - cos A)))/((1 + sin A - cos A)(1 + cos A- sin A))`
`= (sin A cos A (1 + cos A - sin A + 1 + sin A - cos A))/({1 + (sin A - cos A)}{1 - (sin A - cos A)})`
`= (2 sin A cos A)/(1 - (sin A - cos A)^2)`
`= (2 sin A cos A)/(1-(sin^2 A - 2 sin A cos A + cos^2 A))`
`= (2 sin A cos A)/(1 - (1 - 2 sin A cos A))`
`= (2 sin A cos A)/(1 - 1 + 2 sin A cos A)`
`= (2 sin A cos A)/(2 sin A cos A)`
= 1
Hence proved.
APPEARS IN
संबंधित प्रश्न
Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`
Prove the following trigonometric identity.
`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`
Write the value of tan1° tan 2° ........ tan 89° .
Find the value of sin ` 48° sec 42° + cos 48° cosec 42°`
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1
Prove that :
2(sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) + 1 = 0
Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
Prove that:
`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ