Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`
उत्तर
We have to prove `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`
We know that, `sin^2 A + cos^2 A = 1`
So,
`sin A/(sec A + tab A - 1) + cos A/(cosec A + cot A -1)`
`= sin A/(1/cos A + sin A/cos A - 1) + cos A/(1/sin A + cos A/sin A - 1)`
`= sin A/((1 + sin A - cos A)/cos A) + cos A/((1 + cos A - sin A)/sin A)`
`= (sin A cos A)/(1 + sin A - cos A) + (sin A cos A)/(1 + cos A - sin A)`
`= (sin A cos A(1 + cos A - sin A) + sin A cos A((1 + sin A - cos A)))/((1 + sin A - cos A)(1 + cos A- sin A))`
`= (sin A cos A (1 + cos A - sin A + 1 + sin A - cos A))/({1 + (sin A - cos A)}{1 - (sin A - cos A)})`
`= (2 sin A cos A)/(1 - (sin A - cos A)^2)`
`= (2 sin A cos A)/(1-(sin^2 A - 2 sin A cos A + cos^2 A))`
`= (2 sin A cos A)/(1 - (1 - 2 sin A cos A))`
`= (2 sin A cos A)/(1 - 1 + 2 sin A cos A)`
`= (2 sin A cos A)/(2 sin A cos A)`
= 1
Hence proved.
APPEARS IN
संबंधित प्रश्न
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
Prove the following trigonometric identities:
`(1 - cos^2 A) cosec^2 A = 1`
Prove the following trigonometric identities.
(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
Prove that:
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`
Prove that:
`(sin^2θ)/(cosθ) + cosθ = secθ`
cos4 A − sin4 A is equal to ______.
If cos A + cos2 A = 1, then sin2 A + sin4 A =
Prove the following identity :
secA(1 + sinA)(secA - tanA) = 1
Prove the following identity :
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
If cosθ = `5/13`, then find sinθ.
Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.