Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
उत्तर
LHS = `(sinA + sinB)/(cosA + cosB) + (cosA - cosB)/(sinA - sinB) `
= `((sinA + sinB)(sinA - sinB) + (cosA + cosB)(cosA - cosB))/((cosA + cosB)(sinA - sinB))`
= `(sin^2A - sin^2B + cos^2A - cos^2B)/((cosA + cosB)(sinA - sinB))`
= `((sin^2A + cos^2A) - (sin^2B + cos^2B))/((cosA + cosB)(sinA - sinB)`
= `(1-1)/((cosA + cosB)(sinA - sinB))`
= `0/((cosA + cosB)(sinA - sinB))`
= 0
`(sinA + sinB)/(cosA + cosB) + (cosA - cosB)/(sinA - sinB) = 0`
APPEARS IN
संबंधित प्रश्न
If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,
Prove the following trigonometric identities.
`(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
Prove the following trigonometric identities.
`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`
Prove the following identities:
`cosecA - cotA = sinA/(1 + cosA)`
Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`
Write the value of cos1° cos 2°........cos180° .
From the figure find the value of sinθ.
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
The value of sin2 29° + sin2 61° is
Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`