Advertisements
Advertisements
प्रश्न
Write the value of cos1° cos 2°........cos180° .
उत्तर
Cos 1° cos 2° … cos 180°
= cos 1° cos 2° … cos 90° … cos 180°
= cos 1° cos 2° … 0 … cos 180°
= 0
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities
`(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
Prove the following identities:
`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`
Prove that:
`cosA/(1 + sinA) = secA - tanA`
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`
Write the value of `3 cot^2 theta - 3 cosec^2 theta.`
Prove that:
Sin4θ - cos4θ = 1 - 2cos2θ
From the figure find the value of sinθ.
Simplify : 2 sin30 + 3 tan45.
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
Evaluate:
`(tan 65^circ)/(cot 25^circ)`
Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.
Prove that `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1) = (1 + cos "A")/sin "A"`
Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.
Prove the following identities.
`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`
If cos A + cos2A = 1, then sin2A + sin4 A = ?
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A
If cosA + cos2A = 1, then sin2A + sin4A = 1.