Advertisements
Advertisements
प्रश्न
Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.
उत्तर
LHS = `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2`
⇒ `(1 + sin^2 θ + cos^2 θ + 2(sin θ - cos θ - sin θ. cos θ))/(1 + sin^2 θ + cos^2 θ + 2(sin θ + cos θ + sin θ. cos θ)`
= `(1 + 1 + 2 (sin θ - cos θ - sin θ. cos θ))/( 1 + 1 + 2((sin θ + cos θ + sin θ. cos θ)`
= `(2 (1 + sin θ - cos θ - sin θ. cos θ))/(2( 1 + (sin θ + cos θ + sin θ. cos θ))`
= `( 1 + sin θ - cos θ( 1 + sin θ))/(1 + sin θ + cos θ( 1 + sin θ))`
= `((1 + sin θ)(1 - cos θ))/((1 + sin θ)( 1 + cos θ))`
= `(1 - cos θ)/( 1 + cos θ)`
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`
Prove the following trigonometric identities
tan2 A + cot2 A = sec2 A cosec2 A − 2
`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`
`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
9 sec2 A − 9 tan2 A is equal to
(sec A + tan A) (1 − sin A) = ______.
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.