Advertisements
Advertisements
प्रश्न
The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.
विकल्प
True
False
उत्तर
This statement is False.
Explanation:
Let a = 2, then `a + 1/a = 2 + 1/2 = 5/2`
If 2sinθ = `a + 1/a`, then a
2sinθ = `5/2`
⇒ sinθ = `5/4` = 1.25
Which is not possible ...[∵ sin θ ≤ 1]
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
Prove the following trigonometric identities.
`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`
Prove the following trigonometric identities.
`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`
Prove the following identities:
(1 + cot A – cosec A)(1 + tan A + sec A) = 2
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec theta)`
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to
The value of sin2 29° + sin2 61° is
Prove the following identity :
tanA+cotA=secAcosecA
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
Prove the following identities:
`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`
Prove the following identity :
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`tan35^circ cot(90^circ - θ) = 1`
A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to