हिंदी

The value of 2sinθ can be a+1a, where a is a positive number, and a ≠ 1. - Mathematics

Advertisements
Advertisements

प्रश्न

The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.

विकल्प

  • True

  • False

MCQ
सत्य या असत्य

उत्तर

This statement is False.

Explanation:

Let a = 2, then `a + 1/a = 2 + 1/2 = 5/2`

If 2sinθ = `a + 1/a`, then a

2sinθ = `5/2`

⇒ sinθ =  `5/4` = 1.25

Which is not possible   ...[∵ sin θ ≤ 1]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Introduction To Trigonometry and Its Applications - Exercise 8.2 [पृष्ठ ९३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
अध्याय 8 Introduction To Trigonometry and Its Applications
Exercise 8.2 | Q 9 | पृष्ठ ९३

संबंधित प्रश्न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`


Prove the following trigonometric identities.

`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`


Prove the following trigonometric identities.

`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`


Prove the following identities:

(1 + cot A – cosec A)(1 + tan A + sec A) = 2


Prove that:

`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`


Prove that:

(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A


`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec  theta)`


`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta` 


2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to 


The value of sin2 29° + sin2 61° is


Prove the following identity :

tanA+cotA=secAcosecA 


Prove the following identity :

`1/(tanA + cotA) = sinAcosA`


Prove the following identities:

`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`


Prove the following identity : 

`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq


Without using trigonometric table , evaluate : 

`sin72^circ/cos18^circ  - sec32^circ/(cosec58^circ)`


Find the value of `θ(0^circ < θ < 90^circ)` if : 

`tan35^circ cot(90^circ - θ) = 1`


A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.


Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.


Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.


a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×