Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`
उत्तर
We have to prove `(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`
We know that `sin^2 A = cos^2 A = 1`
`So,
`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 = sec A))`
`= (cos^2 A/sin^2 A(1/cos A - 1))/(1 + sin A)`
`= (cos^2 A/sin^2 A (1 - cos A)/(cos A))/(1 + sin A)`
`= (cos A(1 - cos A))/(sin^2 A(1 + sin A))`
`= (cos A (1 - cos A))/((1 - cos^2 A)(1 + sin A))`
`= (cos A (1 - cos A))/((1 - cos A)(1 + cos A)(1 + sin A))`
`= cos A/((1 + cos A)(1 + sin A))`
`= (1/sec A)/((1 + 1/sec A)(1 + sin A))`
`= (1/sec A)/(((sec A + 1)/sec A)) (1 + sin A)`
`= 1/((sec A +1)(1 + sin A))`
Multiplying both the numerator and denominator by (1 - sin A), we have
`= (1 - sin A)/((sec A + 1)(1 + sin A)(1 - sin A))`
`= (1 - sin A)/((sec A + 1)(1 - sin^2 A))`
`= (1 - sin A)/((sec A + 1)cos^2 A)`
`= sec^2 A ((1 - sin A))/((sec A + 1))`
`= sec^2 A ((1 - sin A)/(1 + sec A))`
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`
The angles of depression of two ships A and B as observed from the top of a light house 60 m high are 60° and 45° respectively. If the two ships are on the opposite sides of the light house, find the distance between the two ships. Give your answer correct to the nearest whole number.
Prove the following trigonometric identities.
`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`
Prove the following trigonometric identities.
`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
Prove the following trigonometric identities.
(1 + cot A − cosec A) (1 + tan A + sec A) = 2
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`
Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`
What is the value of 9cot2 θ − 9cosec2 θ?
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)
Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`
Prove that
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A
Prove the following:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ