Advertisements
Advertisements
प्रश्न
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
उत्तर
Given:
`sec^2θ {(1+sinθ) (1-sin θ)}=k`
⇒ `sec^2θ {(1+sinθ) (1-sin θ)}=k`
⇒` Sec^2θ {1+sinθ}=K`
⇒ `sec^2θ cos^2θ=k`
⇒` 1/cos^2θ xx cos ^2 θ=k`
⇒ `1=k`
⇒` k=1`
Hence, the value of k is 1.
APPEARS IN
संबंधित प्रश्न
If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.
if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`
Prove the following trigonometric identities.
(sec2 θ − 1) (cosec2 θ − 1) = 1
Prove the following identities:
`(sinAtanA)/(1 - cosA) = 1 + secA`
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
Prove the following identities:
`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`
What is the value of (1 + cot2 θ) sin2 θ?
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
Prove the following identity :
tanA+cotA=secAcosecA
Prove the following identity :
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove the following identity :
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove the following identity :
`sec^4A - sec^2A = sin^2A/cos^4A`
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
Without using trigonometric identity , show that :
`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
Choose the correct alternative:
sec 60° = ?