Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
(sec2 θ − 1) (cosec2 θ − 1) = 1
उत्तर
We know that
`sec^2 theta - tan^2 theta = 1`
`cosec^2 theta - cot^2 theta = 1`
So,
`(sec^2 theta - 1)(cosec^2 theta - 1) = tan^2 theta xx cot^2 theta`
`= (tan theta xx cot theta)`
`= (tan theta xx 1/tan theta)^2`
`= (1)^2`
=1
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2
`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`
`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
If a cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2
Prove the following identity :
tanA+cotA=secAcosecA
Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`
Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
Prove the following identities:
`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.
Prove the following identities.
`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
Choose the correct alternative:
sec2θ – tan2θ =?
Choose the correct alternative:
cos 45° = ?
Prove that `1/("cosec" theta - cot theta)` = cosec θ + cot θ
If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3