हिंदी

Prove the Following Trigonometric Identities. (Sec2 θ − 1) (Cosec2 θ − 1) = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

(sec2 θ − 1) (cosec2 θ − 1) = 1

उत्तर

We know that

`sec^2 theta - tan^2 theta = 1`

`cosec^2 theta - cot^2 theta = 1`

So,

`(sec^2 theta - 1)(cosec^2 theta - 1) = tan^2 theta xx cot^2 theta`

`= (tan theta xx cot theta)`

`= (tan theta xx 1/tan theta)^2`

`= (1)^2`

=1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 5 | पृष्ठ ४३

संबंधित प्रश्न

Prove the following trigonometric identities.

`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`


If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2


`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`


`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`


`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`


`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`


Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ


What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]


If cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2 


Prove the following identity :

tanA+cotA=secAcosecA 


Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`


Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.


Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.


Prove the following identities:

`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.


Prove the following identities.

`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2


The value of sin2θ + `1/(1 + tan^2 theta)` is equal to 


Choose the correct alternative:

sec2θ – tan2θ =?


Choose the correct alternative:

cos 45° = ?


Prove that `1/("cosec"  theta - cot theta)` = cosec θ + cot θ


If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×