हिंदी

Prove the Following Trigonometric Identities. (1 + Cos Theta - Sin^2 Theta)/(Sin Theta (1 + Cos Theta)) = Cot Theta - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`

उत्तर

In the given question, we need to prove `(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`

Using the property  `sin^2 theta + cot^2 theta = 1` we get

So

`(1 + cos theta - sin^2 theta)/(sin theta (1 +  cos theta))`

`= (1 + cos theta - (1 - cos^2 theta))/(sin theta (1 + cos theta)`

`= (cos theta + cos^2 theta)/(sin theta (1 + cos theta))`

Solving further, we get

`(cos theta + cos^2 theta)/(sin(1 + cos theta)) = (cos theta (1 + cos theta))/(sin theta(1 + cos theta))`

`= cos theta/sin theta`

`= cot theta`

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 53 | पृष्ठ ४५

संबंधित प्रश्न

Express the ratios cos A, tan A and sec A in terms of sin A.


Prove the following trigonometric identities

`cos theta/(1 - sin theta) = (1 + sin theta)/cos theta`


Prove the following trigonometric identities.

`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`


Given that:
(1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)

Show that one of the values of each member of this equality is sin α sin β sin γ


Prove the following identities:

(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A


Prove the following identities:

`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`


Write the value of `(1 + tan^2 theta ) cos^2 theta`. 


\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to 


\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to


Prove the following identity :

 ( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ) 


Prove the following identity :

secA(1 + sinA)(secA - tanA) = 1


Prove the following Identities :

`(cosecA)/(cotA+tanA)=cosA`


Prove that  `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`


If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`


Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2  = 1`


Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`


Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`


Choose the correct alternative:

sec 60° = ?


Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`


If cos (α + β) = 0, then sin (α – β) can be reduced to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×