Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
उत्तर
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
`cot^2A - 2cotA cosecA + cosec^2x = (1 - cosA)/(1 + cosA)`
`(cos^2A)/(sin^2A) - (2cosA)/(sin^2A) + 1/(sin^2A) = (1 - cosA)/(1 + cosA)`
`(cos^2A - 2cosA + 1)/(sin^2A) = (1 - cosA)/(1 + cosA)`
`(cos^2A - 2cosA + 1)/(1 - cos^2A) = (1 - cosA)/(1 + cosA)`
`((1 - cosA)(1 - cosA))/((1 + cosA)(1 - cosA)) = (1 - cosA)/(1 + cosA)`
`(1 - cosA)/(1 + cosA) = (1 - cosA)/(1 + cosA)`
APPEARS IN
संबंधित प्रश्न
(secA + tanA) (1 − sinA) = ______.
Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
Prove the following identities:
`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`
Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
If cosec θ − cot θ = α, write the value of cosec θ + cot α.
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1
Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ