Advertisements
Advertisements
प्रश्न
If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1
उत्तर
LHS = mn = (secθ + tanθ) (secθ - tanθ)
⇒ LHS = `sec^2θ - tan^2θ` [Because (a-b)(a+b) = a2 - b2]
⇒ LHS = 1 [Since `1 + tan^2θ = sec^2θ`]
Hence , mn = 1
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following identities:
`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
Prove that:
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1
Prove the following identity :
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ) + cos2 θ.
Prove the following identities.
cot θ + tan θ = sec θ cosec θ
`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.
Activity:
`5/(sin^2theta) - 5cot^2theta`
= `square (1/(sin^2theta) - cot^2theta)`
= `5(square - cot^2theta) ......[1/(sin^2theta) = square]`
= 5(1)
= `square`