Advertisements
Advertisements
प्रश्न
Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ) + cos2 θ.
उत्तर
LHS = cosec2(90° - θ) - tan2 θ
LHS = sec2 θ - tan2 θ = 1
RHS = cos2(90° - θ) + cos2 θ
RHS = sin2θ + cos2 θ = 1
Hence, LHS = RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.
`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`
Show that none of the following is an identity:
`tan^2 theta + sin theta = cos^2 theta`
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1
If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`
Prove that
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A
If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`