Advertisements
Advertisements
Question
Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ) + cos2 θ.
Solution
LHS = cosec2(90° - θ) - tan2 θ
LHS = sec2 θ - tan2 θ = 1
RHS = cos2(90° - θ) + cos2 θ
RHS = sin2θ + cos2 θ = 1
Hence, LHS = RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Show that `sqrt((1-cos A)/(1 + cos A)) = sinA/(1 + cosA)`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
Prove that `1/("cosec" theta - cot theta)` = cosec θ + cot θ
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α