Advertisements
Advertisements
Question
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
Solution
L.H.S. = `cos θ/(1 - sin θ)`
= `(cos θ(1 + sin θ))/((1 - sin θ)(1 + sin θ))`
= `(cos θ(1 + sin θ))/(1 - sin^2θ)`
= `(cos θ(1 + sin θ))/(cos^2 θ)`
= `( 1 + sin θ)/cos θ`
Hence proved.
APPEARS IN
RELATED QUESTIONS
If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
What is the value of (1 − cos2 θ) cosec2 θ?
If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.
What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ
Prove that cot2θ – tan2θ = cosec2θ – sec2θ
If cos (α + β) = 0, then sin (α – β) can be reduced to ______.
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.