Advertisements
Advertisements
Question
Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.
Solution
L.H.S. = tan2Φ + cot2Φ + 2
= tan2Φ + 1 + cot2Φ + 1
= sec2Φ + cosec2Φ
= `1/cos^2 Φ + 1/sin^2Φ`
= `(sin^2 Φ + cos^2 Φ)/(sin^2 Φ.cos^2Φ )`
= `1/(sin^2 Φ. cos^2 Φ )`
= cosec2Φ. sec2Φ
= R.H.S.
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B
Prove the following identities:
`cosecA + cotA = 1/(cosecA - cotA)`
Prove the following identities:
`1 - sin^2A/(1 + cosA) = cosA`
If sinθ = `11/61`, find the values of cosθ using trigonometric identity.
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
Prove the following identity :
`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ) + cos2 θ.
Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2 = 1`
Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.