Advertisements
Advertisements
प्रश्न
Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.
उत्तर
L.H.S. = tan2Φ + cot2Φ + 2
= tan2Φ + 1 + cot2Φ + 1
= sec2Φ + cosec2Φ
= `1/cos^2 Φ + 1/sin^2Φ`
= `(sin^2 Φ + cos^2 Φ)/(sin^2 Φ.cos^2Φ )`
= `1/(sin^2 Φ. cos^2 Φ )`
= cosec2Φ. sec2Φ
= R.H.S.
Hence proved.
APPEARS IN
संबंधित प्रश्न
if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`
Without using trigonometric tables evaluate
`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`
Prove the following trigonometric identities.
`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`
Prove the following identities:
(cos A + sin A)2 + (cos A – sin A)2 = 2
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.
If sin θ + cos θ = `sqrt(3)`, then show that tan θ + cot θ = 1
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ