Advertisements
Advertisements
प्रश्न
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
उत्तर
`(tan^2 theta - sec^2 theta )/ (cot^2 theta - cosec^2 theta)`
=` (-1)/(-1)`
= 1
APPEARS IN
संबंधित प्रश्न
9 sec2 A − 9 tan2 A = ______.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`
Prove the following identities:
(1 + tan A + sec A) (1 + cot A – cosec A) = 2
`cosec theta (1+costheta)(cosectheta - cot theta )=1`
If sec θ + tan θ = x, then sec θ =
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`
Find the value of ( sin2 33° + sin2 57°).
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.
(1 + sin A)(1 – sin A) is equal to ______.