Advertisements
Advertisements
प्रश्न
if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`
उत्तर
Given that,
`cosec theta - sin theta = a^3` .....(1)
`sec theta - cos theta = b^3` ......(2)
We have to prove `a^2b^2(a^2 + b^2) = 1`
We know that `sin^2 theta + cos^2 theta = 1`
Now from the first equation, we have
`cosec theta - sin theta = a^3`
`=> 1/sin theta - sin theta = a^3`
`=> (1 - sin^2 theta)/sin theta = a^3`
`=> cos^2 theta/sin theta = a^3`
`=> a = (cos^(2/3) theta)/(sin^(1/3) theta)`
Again from the second equation, we have
`sec theta - cos theta =- b^3`
`=> 1/cos theta - cos theta = b^3`
`=> (1 - cos^2 theta)/cos theta = b^3`
`=> sin^2 theta/cos theta = b^3`
`=> b = (sin^(2/3) theta)/(cos^(1/3) theta)`
Therefore, we have
`a^2b^2 (a^2 + b^2) = (cos^(4/3) theta)/(sin^(2/3) theta cos^(2/3) theta) ((cos^(4/3) theta)/(sin^(2/3) theta) + (sin^(4/3) theta)/(cos^(2/3) theta))`
`= sin^(2/3) theta cos^(2/3) ((cos^(4/3) theta)/(sin^(2/3) theta) + (sin^(4/3) theta)/(cos^(2/3) theta))`
`= cos^(2/3) theta cos^(4/3) theta + sin^(2/3) theta sin^(4/3) theta`
`= cos^2 theta + sin^2 theta`
= 1
Hence proved.
APPEARS IN
संबंधित प्रश्न
The angles of depression of two ships A and B as observed from the top of a light house 60 m high are 60° and 45° respectively. If the two ships are on the opposite sides of the light house, find the distance between the two ships. Give your answer correct to the nearest whole number.
Prove the following trigonometric identities.
`(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
Prove that:
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`
Prove that:
cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A
Write the value of `(cot^2 theta - 1/(sin^2 theta))`.
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
What is the value of \[\sin^2 \theta + \frac{1}{1 + \tan^2 \theta}\]
If cos A + cos2 A = 1, then sin2 A + sin4 A =
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
Prove that:
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Prove the following identities.
`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ
If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to
Prove that `"cosec" θ xx sqrt(1 - cos^2theta)` = 1
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ
If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`