English

If `Cosec Theta - Sin Theta = A^3`, `Sec Theta - Cos Theta = B^3` Prove that `A^2 B^2 (A^2 + B^2) = 1` - Mathematics

Advertisements
Advertisements

Question

if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`

Solution

Given that,

`cosec theta - sin theta = a^3` .....(1)

`sec theta - cos theta = b^3`    ......(2)

We have to prove `a^2b^2(a^2 + b^2) = 1`

We know that `sin^2 theta + cos^2 theta = 1`

Now from the first equation, we have

`cosec theta - sin theta = a^3`

`=> 1/sin theta - sin theta = a^3`

`=> (1 - sin^2 theta)/sin theta = a^3`

`=> cos^2 theta/sin theta = a^3`

`=> a = (cos^(2/3) theta)/(sin^(1/3) theta)`

Again from the second equation, we have

`sec theta - cos theta =- b^3`

`=> 1/cos theta - cos theta = b^3`

`=> (1 - cos^2 theta)/cos theta = b^3`

`=> sin^2 theta/cos theta = b^3`

`=> b = (sin^(2/3) theta)/(cos^(1/3) theta)`

Therefore, we have

`a^2b^2 (a^2 + b^2) = (cos^(4/3) theta)/(sin^(2/3) theta cos^(2/3) theta) ((cos^(4/3) theta)/(sin^(2/3) theta) + (sin^(4/3) theta)/(cos^(2/3) theta))`

`= sin^(2/3) theta cos^(2/3) ((cos^(4/3) theta)/(sin^(2/3) theta) + (sin^(4/3) theta)/(cos^(2/3) theta))`

`= cos^(2/3) theta cos^(4/3) theta + sin^(2/3) theta sin^(4/3) theta`

`= cos^2 theta + sin^2 theta`

= 1

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 46]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 76 | Page 46

RELATED QUESTIONS

Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.


Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`

 


Prove the following trigonometric identities.

`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`


Prove the following trigonometric identities.

`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta  + cot theta`


Prove the following identities:

`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`


`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`


If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.


Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`. 


What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]


\[\frac{x^2 - 1}{2x}\] is equal to 


Prove the following identity : 

`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`


Prove the following identity :

`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`


If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`


For ΔABC , prove that : 

`tan ((B + C)/2) = cot "A/2`


If sec θ = `25/7`, then find the value of tan θ.


If cosθ = `5/13`, then find sinθ. 


A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.


Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0


If sin A = `1/2`, then the value of sec A is ______.


If tan θ = `x/y`, then cos θ is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×