Advertisements
Advertisements
Question
For ΔABC , prove that :
`tan ((B + C)/2) = cot "A/2`
Solution
`tan ((B + C)/2) = cot "A/2`
We know that for a triangle ΔABC
`<A + <B + <C = 180^circ`
`<B + <C = 180^circ - <A`
`(<B + <C)/2 = 90^circ - (<A)/2`
`tan ((B + C)/2) = tan(90^circ - A/2)`
= `cot(A/2)`
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
(1 + cot A – cosec A)(1 + tan A + sec A) = 2
`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`
Find the value of ( sin2 33° + sin2 57°).
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`
Complete the following activity to prove:
cotθ + tanθ = cosecθ × secθ
Activity: L.H.S. = cotθ + tanθ
= `cosθ/sinθ + square/cosθ`
= `(square + sin^2theta)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ....... ∵ `square`
= `1/sinθ xx 1/cosθ`
= `square xx secθ`
∴ L.H.S. = R.H.S.
Show that, cotθ + tanθ = cosecθ × secθ
Solution :
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ