Advertisements
Advertisements
Question
If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`
Solution
`x^2 - y^2 = (asecθ + bTanθ)^2 - (aTanθ + bSecθ)^2`
⇒ `a^2sec^2θ + b^2Tan^2θ + 2abSecθTanθ - (a^2Tan^2θ + b^2Sec^2θ + 2abSecθTanθ)`
⇒ `sec^2θ(a^2 - b^2) + Tan^2θ(b^2 - a^2) = (a^2 - b^2)[Sec^2θ - Tan^2θ]`
⇒ `(a^2 - b^2)` [Since `sec^2θ - Tan^2θ = 1`]
Hence , `x^2 - y^2 = a^2 - b^2`
APPEARS IN
RELATED QUESTIONS
Evaluate sin25° cos65° + cos25° sin65°
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`
If `sec theta + tan theta = x," find the value of " sec theta`
Prove the following identity :
`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
If sec θ = `25/7`, find the value of tan θ.
Solution:
1 + tan2 θ = sec2 θ
∴ 1 + tan2 θ = `(25/7)^square`
∴ tan2 θ = `625/49 - square`
= `(625 - 49)/49`
= `square/49`
∴ tan θ = `square/7` ........(by taking square roots)
sin2θ + sin2(90 – θ) = ?
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ
If 2sin2β − cos2β = 2, then β is ______.