English

Sin2θ + sin2(90 – θ) = ? - Geometry Mathematics 2

Advertisements
Advertisements

Question

sin2θ + sin2(90 – θ) = ?

Options

  • 0

  • 1

  • 2

  • `sqrt(2)`

MCQ

Solution

1

Explanation:

(sin (90 – θ))2 = (cosθ)2 

sin2 (90 – θ) = cos2θ     ...(1)

sin2θ + cos2θ = 1      

∴ sin2θ + sin2(90 – θ) = 1     ...From (1) 

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Q.1 (A)

RELATED QUESTIONS

Prove the following trigonometric identities.

`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`


Prove the following trigonometric identities.

`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`


Prove the following identities:

(1 + cot A – cosec A)(1 + tan A + sec A) = 2


Prove that:

`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`


Prove the following identities:

`cosA/(1 + sinA) + tanA = secA`


Prove the following identities:

`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`


`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta` 


`(cos theta  cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`


If `sqrt(3) sin theta = cos theta  and theta ` is an acute angle, find the value of θ .


If tan A =` 5/12` ,  find the value of (sin A+ cos A) sec A.


Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`


If \[\cos A = \frac{7}{25}\]  find the value of tan A + cot A. 


The value of sin2 29° + sin2 61° is


If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that   `x^2 + y^2 + z^2 = r^2`


Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`


Prove the following identities:

`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.


If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to 


Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0


Prove that (sec θ + tan θ) (1 – sin θ) = cos θ


(1 + sin A)(1 – sin A) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×