Advertisements
Advertisements
Question
sin2θ + sin2(90 – θ) = ?
Options
0
1
2
`sqrt(2)`
Solution
1
Explanation:
(sin (90 – θ))2 = (cosθ)2
sin2 (90 – θ) = cos2θ ...(1)
sin2θ + cos2θ = 1
∴ sin2θ + sin2(90 – θ) = 1 ...From (1)
RELATED QUESTIONS
Prove the following trigonometric identities.
`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`
Prove the following trigonometric identities.
`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`
Prove the following identities:
(1 + cot A – cosec A)(1 + tan A + sec A) = 2
Prove that:
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
Prove the following identities:
`cosA/(1 + sinA) + tanA = secA`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
`(cos theta cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`
If `sqrt(3) sin theta = cos theta and theta ` is an acute angle, find the value of θ .
If tan A =` 5/12` , find the value of (sin A+ cos A) sec A.
Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
The value of sin2 29° + sin2 61° is
If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that `x^2 + y^2 + z^2 = r^2`
Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`
Prove the following identities:
`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.
If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ
(1 + sin A)(1 – sin A) is equal to ______.