Advertisements
Advertisements
Question
If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to
Options
25
`1/25`
5
1
Solution
`1/25`
Explanation;
Hint:
5x = sec θ
x = `(sec theta/5)`
∴ x2 = `(sec^2 theta)/25`
`5/x` = tan θ
`1/x = tan theta/5`
`1/x^2 = (tan^2 theta)/25`
`x^2 - 1/x^2 = (sec^2 theta)/25 - (tan^2 theta)/25`
= `(sec^2 theta - tan^2 theta)/25`
= `1/25`
APPEARS IN
RELATED QUESTIONS
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
Show that `sqrt((1-cos A)/(1 + cos A)) = sinA/(1 + cosA)`
Prove the following identities:
`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
cos4 A − sin4 A is equal to ______.
Prove the following identity :
`cosecA + cotA = 1/(cosecA - cotA)`
Prove that:
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)