Advertisements
Advertisements
Question
Prove the following identities:
`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`
Solution
L.H.S. = `(cosecA-1)/(cosecA+1)`
= `(cosecA - 1)/(cosecA + 1) xx (cosecA + 1)/(cosecA + 1)`
= `(cosec^2A - 1)/(cosecA + 1)^2`
= `cot^2A/(cosecA + 1)^2`
= `(cos^2A/sin^2A)/(1/sinA + 1)^2`
= `(cosA/(1 + sinA))^2` = R.HS.
APPEARS IN
RELATED QUESTIONS
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`
Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.
tan θ × `sqrt(1 - sin^2 θ)` is equal to: