English

If Cos θ + Cot θ = M and Cosec θ – Cot θ = N, Prove that Mn = 1 - Mathematics

Advertisements
Advertisements

Question

If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1

Solution

LHS = mn

`= (cosec theta + cot theta) (cosec theta - cot theta)`

`= cosece^2 theta - cot^2 theta`

= 1    [∵ `(1 + b)(a - b) = a^2 - b^2 cosec^2 theta - cot^2 theta = 1`]

=RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 47]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 81 | Page 47

RELATED QUESTIONS

Prove the following trigonometric identities.

sin2 A cot2 A + cos2 A tan2 A = 1


Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`


Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`


If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2


`(sec^2 theta-1) cot ^2 theta=1`


`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`


If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`


Prove the following identity : 

`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`


Prove the following identity : 

`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq


Prove the following identity :

`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`


Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`


Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.


Prove the following identities.

cot θ + tan θ = sec θ cosec θ


Prove the following identities.

`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ


To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.

Activity:

L.H.S = `square`

= `square/sintheta + sintheta/costheta`

= `(cos^2theta + sin^2theta)/square`

= `1/(sintheta*costheta)`     ......`[cos^2theta + sin^2theta = square]`

= `1/sintheta xx 1/square`

= `square`

= R.H.S


Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B


If cos A + cos2A = 1, then sin2A + sin4 A = ?


If cos (α + β) = 0, then sin (α – β) can be reduced to ______.


If sin A = `1/2`, then the value of sec A is ______.


Show that, cotθ + tanθ = cosecθ × secθ

Solution :

L.H.S. = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(square + square)/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ............... `square`

= `1/sinθ xx 1/square`

= cosecθ × secθ

L.H.S. = R.H.S

∴ cotθ + tanθ = cosecθ × secθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×