Advertisements
Advertisements
Question
`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`
Solution
LHS= `(1+tan^2theta)(1+cot^2 theta)`
=`sec^2 theta. cosec^2 theta (∵ sec^2 theta - tan^2 theta=1 and cosec^2 - cot^2 theta =1)`
=`1/(cos^2 theta. sin^theta)`
=` 1/((1-sin^2 theta ) sin^2 theta`
=`1/(sin^2theta-sin^4theta)`
==RHS
Hence, LHS = RHS
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
Prove the following trigonometric identities.
`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`
Prove the following trigonometric identities.
`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`
If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
What is the value of (1 − cos2 θ) cosec2 θ?
Write True' or False' and justify your answer the following :
The value of the expression \[\sin {80}^° - \cos {80}^°\]
Prove the following identity :
`cos^4A - sin^4A = 2cos^2A - 1`
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
Prove the following identity :
`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
Prove the following identities.
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1
Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2
Prove that sin4A – cos4A = 1 – 2cos2A
Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.