English

Prove that: tan AtanACot ACotAsin A cos Atan A(1+tan2A)2+Cot A(1+Cot2A)2=sin A cos A. - Geometry Mathematics 2

Advertisements
Advertisements

Question

Prove that:

`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.

Sum

Solution

`"tan A"/(1 + "tan"^2 "A")^2 + "cot A"/(1 + "cot"^2 "A")^2 = "sin A cos A"`.

LHS = `"tan A"/(1 + "tan"^2 "A")^2 + "cot A"/(1 + "cot"^2 "A")^2`

LHS =  `"tan A"/("sec"^2 "A")^2 + "cot A"/("cosec"^2 "A")^2         ...{( 1 + "tan"^2θ = "sec"^2θ),(1 + "cot"^2θ = "cosec"^2θ):}`

LHS = `"tan A" × 1/("sec"^2 "A")^2 + "cot A" × 1/("cosec"^2 "A")^2`

LHS = `"sin A"/"cos A" × "cos"^4 "A" + "cos A"/"sin A" × "sin"^4 "A"   ...{(cosθ = 1/sec θ),(sin θ = 1/"cosecθ"):}`

LHS = sinA cos3A + cosA sin3A

LHS = sinA cosA (cos2A  + sin2A)

LHS = sinA cosA.(1)                ...(cos2A  + sin2A = 1)

LHS = sinA cosA

RHS = sinA cosA

LHS = RHS

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Practice Set 6.1 [Page 131]

APPEARS IN

Balbharati Geometry (Mathematics 2) [English] 10 Standard SSC Maharashtra State Board
Chapter 6 Trigonometry
Practice Set 6.1 | Q 6.10 | Page 131

RELATED QUESTIONS

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`


Prove that `cosA/(1+sinA) + tan A =  secA`


Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2


Prove the following trigonometric identities.

`(cosec A)/(cosec A  - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`


Prove the following identities:

`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`


Prove the following identities:

`1/(tan A + cot A) = cos A sin A`


Prove the following identities:

`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`


If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2


Prove the following identities:

`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`


Prove that:

`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`


`cot^2 theta - 1/(sin^2 theta ) = -1`a


If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.


`If sin theta = cos( theta - 45° ),where   theta   " is   acute, find the value of "theta` .


If \[\cos A = \frac{7}{25}\]  find the value of tan A + cot A. 


Write True' or False' and justify your answer the following: 

\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.


(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to


Prove the following identity : 

`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq


Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.


Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.


If x = a tan θ and y = b sec θ then


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×