हिंदी

Prove that: tan AtanACot ACotAsin A cos Atan A(1+tan2A)2+Cot A(1+Cot2A)2=sin A cos A. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Prove that:

`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.

योग

उत्तर

`"tan A"/(1 + "tan"^2 "A")^2 + "cot A"/(1 + "cot"^2 "A")^2 = "sin A cos A"`.

LHS = `"tan A"/(1 + "tan"^2 "A")^2 + "cot A"/(1 + "cot"^2 "A")^2`

LHS =  `"tan A"/("sec"^2 "A")^2 + "cot A"/("cosec"^2 "A")^2         ...{( 1 + "tan"^2θ = "sec"^2θ),(1 + "cot"^2θ = "cosec"^2θ):}`

LHS = `"tan A" × 1/("sec"^2 "A")^2 + "cot A" × 1/("cosec"^2 "A")^2`

LHS = `"sin A"/"cos A" × "cos"^4 "A" + "cos A"/"sin A" × "sin"^4 "A"   ...{(cosθ = 1/sec θ),(sin θ = 1/"cosecθ"):}`

LHS = sinA cos3A + cosA sin3A

LHS = sinA cosA (cos2A  + sin2A)

LHS = sinA cosA.(1)                ...(cos2A  + sin2A = 1)

LHS = sinA cosA

RHS = sinA cosA

LHS = RHS

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Practice Set 6.1 [पृष्ठ १३१]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 10 Standard SSC Maharashtra State Board
अध्याय 6 Trigonometry
Practice Set 6.1 | Q 6.10 | पृष्ठ १३१

संबंधित प्रश्न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`sqrt((1+sinA)/(1-sinA)) = secA + tanA`


Prove the following trigonometric identities.

`cosec theta sqrt(1 - cos^2 theta) = 1`


Prove the following trigonometric identities.

(sec2 θ − 1) (cosec2 θ − 1) = 1


Prove the following trigonometric identities.

`sin theta/(1 - cos theta) =  cosec theta + cot theta`


Prove the following trigonometric identity.

`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`


Prove the following trigonometric identities.

`1 + cot^2 theta/(1 + cosec theta) = cosec theta`


Prove the following identities:

`(secA - tanA)/(secA + tanA) = 1 - 2secAtanA + 2tan^2A`


If sec A + tan A = p, show that:

`sin A = (p^2 - 1)/(p^2 + 1)`


Prove that:

`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`


Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`. 


What is the value of \[\sin^2 \theta + \frac{1}{1 + \tan^2 \theta}\]


 Write True' or False' and justify your answer the following :

The value of the expression \[\sin {80}^° - \cos {80}^°\] 


Prove that  `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`


If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.


Prove that `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A - 1) = 1`.


Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`


Prove the following identities.

`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ


Prove the following identities.

`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec"  theta - 1)/("cosec"  theta + 1)`


If x = a tan θ and y = b sec θ then


tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

= `square (1 - (sin^2theta)/(tan^2theta))`

= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`

= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`

= `tan^2theta (1 - square)`

= `tan^2theta xx square`    .....[1 – cos2θ = sin2θ]

= R.H.S


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×