हिंदी

Write True' Or False' and Justify Your Answer the Following : the Value of the Expression Sin 80 ∘ − Cos 80 ∘ - Mathematics

Advertisements
Advertisements

प्रश्न

 Write True' or False' and justify your answer the following :

The value of the expression \[\sin {80}^° - \cos {80}^°\] 

सत्य या असत्य

उत्तर

Consider the table. 

θ 30° 45° 60° 90°
sin θ 0 `1/2` `1/sqrt2` `sqrt3/2` 1
cos θ  1 `sqrt3/2` `1/sqrt2` `1/2` 0

Here, 

`sin 60°-cos 60°=sqrt3/2-1/2>0` 

`sin 90°-cos 90°= 1-0>0 ` 

`so, sin 80°-cos 80° > 0`    ` (sin θ-cos θ≥0AA45°≤ θ ≤ 90° )`

Therefore, the given statement is false.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.3 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.3 | Q 24.4 | पृष्ठ ५६

संबंधित प्रश्न

Prove the following identities:

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`


`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`


`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta` 


`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`


Prove the following identity :

`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`


Prove the following identity : 

`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`


Prove the following identity : 

`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`


Prove the following identity : 

`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`


Prove the following identity : 

`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`


If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`


Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.


Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.


Prove the following identities.

`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ


Choose the correct alternative:

cot θ . tan θ = ?


Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec"  theta)` = sec θ


If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.


If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.


Prove the following that:

`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ


Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?


(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×