Advertisements
Advertisements
प्रश्न
Write True' or False' and justify your answer the following :
The value of the expression \[\sin {80}^° - \cos {80}^°\]
उत्तर
Consider the table.
θ | 0° | 30° | 45° | 60° | 90° |
sin θ | 0 | `1/2` | `1/sqrt2` | `sqrt3/2` | 1 |
cos θ | 1 | `sqrt3/2` | `1/sqrt2` | `1/2` | 0 |
Here,
`sin 60°-cos 60°=sqrt3/2-1/2>0`
`sin 90°-cos 90°= 1-0>0 `
`so, sin 80°-cos 80° > 0` ` (sin θ-cos θ≥0AA45°≤ θ ≤ 90° )`
Therefore, the given statement is false.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
Prove the following identity :
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove the following identity :
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`
Prove the following identity :
`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ
Choose the correct alternative:
cot θ . tan θ = ?
Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ
If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ
Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?
(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.