Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
उत्तर
L.H.S. `=(cosec A)/(cosecA - 1) + (cosecA)/(cosecA + 1)`
= `(cosec A (cosec A + 1) + cosec A (cosec A - 1))/((cosec A - 1) (cosec A + 1))`
= `(cosec^2 A+cosec A + cosec^2 A-cosec A)/((cosec A)^2 - (1)^2)`
= `(2 cosec^2 A)/(cosec^2 A - 1)`
= `(2 cosec^2 A)/(cot^2 A)` ...(∵ cosec2 A – 1 = cot2 A)
= `2(1/cancel(sin^2A))/(cos^2A/cancel(sin^2A))`
= `2/cos^2A`
= 2 sec2 A
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
Prove the following trigonometric identities.
(1 + cot A − cosec A) (1 + tan A + sec A) = 2
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
Write the value of `(cot^2 theta - 1/(sin^2 theta))`.
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
Prove the following identity :
sinθcotθ + sinθcosecθ = 1 + cosθ
Find the value of `θ(0^circ < θ < 90^circ)` if :
`tan35^circ cot(90^circ - θ) = 1`
Choose the correct alternative:
cos θ. sec θ = ?
`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?