Advertisements
Advertisements
प्रश्न
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
उत्तर
We have,
`6 tan^2 θ-6/cos^2 θ= 6 tan^2 θ-6 sec ^2 θ`
= `-6 (sec^2θ-tan^2 θ)` ...{`sec ^2 θ-tan ^2 θ-1` }
= -6 × 1
= -6
\[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
APPEARS IN
संबंधित प्रश्न
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
Prove the following trigonometric identities.
sec6θ = tan6θ + 3 tan2θ sec2θ + 1
Prove the following identities:
`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
Find the value of sin ` 48° sec 42° + cos 48° cosec 42°`
If tanθ `= 3/4` then find the value of secθ.
If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9.
sec4 A − sec2 A is equal to
Prove the following identity :
`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`
Prove the following identity :
`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ) + cos2 θ.
Choose the correct alternative:
cot θ . tan θ = ?
If tan θ = `9/40`, complete the activity to find the value of sec θ.
Activity:
sec2θ = 1 + `square` ......[Fundamental trigonometric identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square`
sec θ = `square`
If cos θ = `24/25`, then sin θ = ?
Prove that sec2θ – cos2θ = tan2θ + sin2θ
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.
Find the value of sin2θ + cos2θ
Solution:
In Δ ABC, ∠ABC = 90°, ∠C = θ°
AB2 + BC2 = `square` .....(Pythagoras theorem)
Divide both sides by AC2
`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`
∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`
But `"AB"/"AC" = square and "BC"/"AC" = square`
∴ `sin^2 theta + cos^2 theta = square`