हिंदी

What is the value of 6tan2⁡θ−6cos2⁡θ - Mathematics

Advertisements
Advertisements

प्रश्न

What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]

योग

उत्तर

We have, 

`6 tan^2 θ-6/cos^2 θ= 6 tan^2 θ-6 sec ^2 θ` 

= `-6 (sec^2θ-tan^2 θ)`    ...{`sec ^2 θ-tan ^2 θ-1` }

= -6 × 1

= -6

\[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.3 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.3 | Q 13 | पृष्ठ ५५

संबंधित प्रश्न

Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.


Prove the following trigonometric identities.

sec6θ = tan6θ + 3 tan2θ sec2θ + 1


Prove the following identities:

`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`


`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta` 


`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec  theta)`


Find the value of sin ` 48° sec 42° + cos 48°  cosec 42°`

 


If tanθ `= 3/4` then find the value of secθ.


If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9. 


sec4 A − sec2 A is equal to


Prove the following identity :

`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`


Prove the following identity : 

`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`


If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`


Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ)  +  cos2 θ.


Choose the correct alternative:

cot θ . tan θ = ?


If tan θ = `9/40`, complete the activity to find the value of sec θ.

Activity:

sec2θ = 1 + `square`     ......[Fundamental trigonometric identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square` 

sec θ = `square` 


If cos θ = `24/25`, then sin θ = ?


Prove that sec2θ – cos2θ = tan2θ + sin2θ


`sqrt((1 - cos^2theta) sec^2 theta) = tan theta` 


If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.


Find the value of sin2θ  + cos2θ

Solution:

In Δ ABC, ∠ABC = 90°, ∠C = θ°

AB2 + BC2 = `square`   .....(Pythagoras theorem)

Divide both sides by AC2

`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`

∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`

But `"AB"/"AC" = square and "BC"/"AC" = square`

∴ `sin^2 theta  + cos^2 theta = square` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×