Advertisements
Advertisements
प्रश्न
If tanθ `= 3/4` then find the value of secθ.
उत्तर
If tanθ = 34
1 + tan2θ = sec2θ
∴ 1 + `(3/4)^2= sec^2θ`
∴ `1 + 9/16 = sec^2θ`
∴ `25/16 = sec^2θ`
∴ `secθ = 5/4`
APPEARS IN
संबंधित प्रश्न
Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`
Prove the following trigonometric identities.
`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`
Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
Prove the following identities:
`(1 + sin A)/(1 - sin A) = (cosec A + 1)/(cosec A - 1)`
Prove the following identities:
`(secA - tanA)/(secA + tanA) = 1 - 2secAtanA + 2tan^2A`
Prove the following identities:
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`
`((sin A- sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0`
Prove the following identity :
( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ)
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Prove the following identity :
`sec^2A.cosec^2A = tan^2A + cot^2A + 2`
Prove the following identity :
`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.
If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ
Choose the correct alternative:
sec 60° = ?
Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1