Advertisements
Advertisements
Question
If tanθ `= 3/4` then find the value of secθ.
Solution
If tanθ = 34
1 + tan2θ = sec2θ
∴ 1 + `(3/4)^2= sec^2θ`
∴ `1 + 9/16 = sec^2θ`
∴ `25/16 = sec^2θ`
∴ `secθ = 5/4`
APPEARS IN
RELATED QUESTIONS
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`
Prove the following trigonometric identities.
`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`
If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.
If m = ` ( cos theta - sin theta ) and n = ( cos theta + sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
If `sqrt(3) sin theta = cos theta and theta ` is an acute angle, find the value of θ .
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.
Prove the following identities:
`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.
The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.