Advertisements
Advertisements
Question
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
Solution
`cosec49°cos41° + (tan31°)/(cot59°)`
⇒ `sec(90^circ - 41^circ)cos41^circ + cot(90^circ - 59^circ)/cot56^circ`
⇒ `sec41^circ cos41^circ + cot59^circ/cot59^circ` = 1+ 1 = 2
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`
For ΔABC , prove that :
`sin((A + B)/2) = cos"C/2`
If cosθ = `5/13`, then find sinθ.
Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .
Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
If 2sin2β − cos2β = 2, then β is ______.
The value of tan A + sin A = M and tan A - sin A = N.
The value of `("M"^2 - "N"^2) /("MN")^0.5`
Factorize: sin3θ + cos3θ
Hence, prove the following identity:
`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`